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LYAPUNOV FUNCTIONS

Consider the classical ‘dynamical system’, the flow

with , the state space. The function

is said to be a Lyapunov function if along trajectories

Equivalent to for all .

Very useful idea in stability analysis.
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A much more appropriate starting point for the study of dynamics
are open systems.

SYSTEMINPUTS OUTPUTS
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INPUT/STATE/OUTPUT SYSTEMS

Consider

: the input, state, and output.

Let

be a function, called the supply rate.

models something like the power delivered to the system
when the input value is and output value is .
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DISSIPATIVITY

is defined to be dissipative w.r.t. the supply rate if there exists

called the storage function, such that

along input/state/output trajectories of .

This inequality is called the dissipation inequality.

Equivalent to
for all .

If equality holds: ‘conservative’ system.
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Vs
STORAGESUPPLY

Dissipativeness Increase in storage Supply.
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EXAMPLES

System Supply Storage

Electrical
circuit voltage

current

energy in
capacitors and
inductors

Mechanical
system force, velocity

potential +
kinetic energy

Thermodynamic
system heat, work

internal
energy

Thermodynamic
system heat, temp.

entropy

etc. etc. etc.
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THE CONSTRUCTION OF STORAGE FUNCTIONS

Central question: Given (a representation of ) and ,
does there exist such that the dissipation inequality holds?

Assume linear, time-invariant, finite-dimensional, minimal:

and quadratic: e.g.,

Then exists iff (unique) such that

... iff a quadratic one exists:
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... iff there exists a solution to the
Linear Matrix Inequality (LMI)

.. iff ... to the Algebraic Riccati Inequality

... to the Algebraic Riccati Equation (ARE)

Solution set is convex, compact, and attains its inf and sup:

Extensive theory, relation with other system representations,
many applications, well-understood (also algorithmically).
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The notion of a dissipative system:

Generalization of ‘Lyapunov function’ to open systems

Central concept in control theory: many applications to
feedback stability, robust ( -) control, adaptive control,
system identification, passivation control

passive electrical circuit synthesis procedures

Notable special case: second law of thermodynamics

Drawback 1: requires separation of interaction variables in
inputs and outputs

Drawback 2: imposes storage function = state function.
This is something one would like to prove!

Drawback 3: limited to dynamical ( distributed) systems
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HEAT DIFFUSION

Evolution of the temperature along a heat conducting bar:

temperature,
rate of heat supplied.
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First law:

Diffusion is conservative w.r.t. the supply rate :

Second law:

Diffusion is dissipative w.r.t. the supply rate .

for all the elements of the behavior such that
outside a compact set.
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Can these ‘global’ versions be expressed as ‘local’ laws?

FLUX

SUPPLY

STORAGE

FLUX

Change of storage + Flux Supply.
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Define the following variables:

the stored energy density,

the energy flux,

the entropy density,

the entropy flux,

the rate of entropy production.
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Local versions of the first and second law:

Conservation of energy:

Entropy production:

Note: Since
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It is this ad hoc construction of the

storage and flux

that we want to systematize, to carry out in general.
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BEHAVIORAL SYSTEMS

A system :=

the set of independent variables
time, space, time and space

the set of dependent variables
(= where the variables take on their values),
signal space, space of field variables,

: the behavior = the admissible trajectories
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for a trajectory we thus have:

: the model allows the trajectory
: the model forbids the trajectory

In this lecture, (‘n-D systems’),

often, , independent variables ,
solutions of a system of constant coefficient

linear PDE’s.

’Linear shift-invariant distributed differential systems’.
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Example: Maxwell’s equations

(time and space),

(electric field, magnetic field, current density, charge density),
,

set of solutions to these PDE’s.
Note: 10 variables, 8 equations! free variables.
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n-D LINEAR DIFFERENTIAL SYSTEMS

the solutions of a linear constant coefficient system of PDE’s.

Let and consider

Define
holds

mainly for convenience, but important for some results.
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Notation: n-D linear differential systems:

or
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Example:

Maxwell’s equations

.
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CONTROLLABILITY

Definition: is said to be

controllable

if for all and
for all , non-overlapping closure,

there exists such that and

I.e., controllability the elements of are ‘patch-able’.

Special case: Kalman controllability for 1-D input/state systems.
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In pictures:
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CONDITIONS FOR CONTROLLABILITY

Representations of elements of :

called a kernel representation of ;

called an image representation of
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Elimination theorem
every image (of a linear constant coefficient PDO) is also a kernel.

¿¿ Which kernels are also images ??

Theorem: The following are equivalent for

1. is controllable,

2. admits an image representation,

3. for any
equals or all of ,

4. is torsion free,

etc.
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ARE MAXWELL’S EQUATIONS CONTROLLABLE ?

The following equations in the scalar potential and
the vector potential , generate exactly the solutions
to Maxwell’s equations:

Proves controllability. Illustrates the interesting connection

controllability potential!
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OBSERVABILITY

Consider

behavior ,
manifest variables ; latent variables.

Definition: is said to be
observable from

if to each there exists a unique such that
, i.e., iff is injective.
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variables variables

”hidden”

SYSTEMmanifest latent

”observed”
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Controllability ¿¿ an observable image representation ??

For -D systems, yes! For -D systems, not necessarily!

Call trivializable if an invertible PDO,
, (i.e., with unimodular)

such that

Hence the behavior of is then:
free, .

39



Theorem: The following are equivalent for
:

1. admits an observable image representation,

2. is trivializable,

3.
for all .

Proof: Serre’s conjecture.

Example: controllable -D systems.

Non-examples:

Non-example: Maxwell’s equations. Potential is not observable!
No potential ever is, for Maxwell’s equations.
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Multi-index notation:

42



QDF’s

Let (only finite number ).
The map from to defined by

is called quadratic differential form (QDF) on .

Introduce the -variable polynomial matrix defined by

Denote this QDF as ; whence .
This map is parameterized by
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DISSIPATIVE DISTRIBUTED SYSTEMS

We only consider controllable linear differential systems and QDF’s.

Definition: , controllable, is said to be dissipative with

respect to the supply rate (a QDF) if

for all of compact support.

Idea: rate of ‘energy’ delivered to
the system.
Dissipativity the system absorbs (in space and time) net energy.
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LOCAL VERSION

Assume that a system is ‘globally’ conservative or dissipative.
Can this dissipativity be expressed through a ‘local’ law?

DISSIPATION

FLUX
STORAGE

SUPPLY
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LOCAL DISSIPATION LAW

Main Theorem: Let be controllable. Then is dissipative
with respect to the supply rate iff there exist an image
representation of , and an vector of QDF’s

on , called the flux, such
that the local dissipation law

holds for all that satisfy

As usual

Note: the local law involves involves
(possibly unobservable, - i.e., hidden!) latent variables (the ’s).
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In the case that the independent variables are this
theorem can be reformulated as:

storage and
spatial flux such that

holds for all that satisfy
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EXAMPLE: ENERGY STORED IN EM FIELDS

Maxwell’s equations are dissipative (in fact, conservative) with
respect to the rate of energy supplied.
Introduce the stored energy density, , and

the energy flux density (the Poynting vector,) , given by

The following is a local conservation law for Maxwell’s equations:

Note that the local version of conservation of energy involves in
addition to and , the variables in the rate of energy supplied.
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WHICH PDE’s DESCRIBE ( ) IN MAXWELL’S EQNS ?

Eliminate from Maxwell’s equations. Straightforward
computation of the relevant left syzygy yields

Elimination theorem this exercise would be exact & successful.
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IDEA OF THE PROOF

Use controllability and an image representation to
reduce dissipativeness to

for all of compact support, with

Easily seen to be equivalent to

for all
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POLYNOMIAL MATRIX FACTORIZATION

Consider the factorization equation

with given, and the
unknown.

For , it is well-known (but non-trivial) that this factorization
equation is solvable (for !) iff

for all

For this equation cannot in general be solved over the
polynomial matrices, for , but it can be solved over the
matrices of rational functions, i.e., for .
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This factorizability is a consequence of Hilbert’s 17-th problem!

A polynomial can in general not be
expressed as

with the ’s (it can for ).

But a rational function (and hence a polynomial)
can indeed be expressed as such a

sum of squares, with the ’s , in fact, with .

This solvability over the scalar rational functions immediately leads
to solvability in the matrix case.
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Write the factor , with , and
diagonal. Define . Note that is surjective. Then

This implies

Define as a (non-unique) solution of

This yields the local law

with .
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Hence

with , an image representation of .

Since the image representation need not be
observable, it may be impossible to ‘replace’ by in the case .

However, in the case , we can eliminate , since the image
representation can be taken to be observable, and
can be taken to be .
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Notes:

1. Local versions require hidden (unobservable) latent variables!

2. (or ) is not unique, not even in the conservative case.

3. Is a state function? What is state for PDE’s?

1. and 2. are illustrated already by Maxwell’s equations.
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RECAP

Dissipative systems: a central notion in the theory of open
systems

Important problem: the construction of storage functions

For linear differential systems (systems described by PDE’s) and
quadratic differential forms, the equivalence of global and local
dissipativeness have been demonstrated

The theory of , of linear differential systems, brings system
theory squarely into mainstream mathematics via things as the
fundamental principle, module theory, computer algebra, Serre’s
conjecture, factorization questions, etc.

Issues as the existence of a potential function, conservation laws,
dissipativity, etc., are of much interest in physics as well as in
systems theory ( and control and filtering).
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In this talk, I freely used ideas and results by Oberst, Shankar, Pillai,
Rocha, e.a.

More info? Surf to

http://www.math.rug.nl/ willems/
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Thank you!
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