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/ LYAPUNOV FUNCTIONS '

Consider the classical ‘dynamical system’, the flow

do = f(x)

with x € X, the state space. The function

V:X—=R

is said to be a Lyapunov function if along trajectories

2 V(z)<0

Equivalentto VV(x):f(x) <0 forall x € X

Qery useful idea in stability analysis.
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A much more appropriate starting point for the study of dynamics

are open systems. ~~»

—> —
INPUTS _| SYSTEM _ OUTPUTS
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INPUT/STATE/OUTPUT SYSTEMS

Consider

DI —az_f(az u); y = h(xz,u).

u € U,x € X,y € Y: the input, state, and output.
Let

s:UxY—=R

be a function, called the supply rate.

s(u, y) models something like the power delivered to the system
when the input value is © and output value is y.

o /




/ DISSIPATIVITY ' \

3. is defined to be dissipative w.r.t. the supply rate s if there exists

V:X—=>R,

called the storage function, such that

3t V(@) < s(u,y)

along input/state/output trajectories of X..

This inequality is called the dissipation inequality.

Equivalentto VV(x) - f(x,u) < s(u, h(x,u))
for all (u,x) € U x X.

\Ifequality holds: ‘conservative’ system. /
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Dissipativeness < Increase in storage < Supply.




‘ EXAMPLES '

System Supply Storage
Electrical VI energy in
circuit V : voltage capacitors and
I : current inductors
Mechanical Flov potential +
system F : force, v : velocity Kinetic energy
Thermodynamic | Q + W internal
system Q : heat, W : work energy
Thermodynamic | —Q /T entropy
system Q : heat, T :temp.
etc. etc. etc.
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/ ‘ THE CONSTRUCTION OF STORAGE FUNCTIONS . \

Central question: Given (a representation of ) > and s,

does there exist V' such that the dissipation inequality holds?

Assume X linear, time-invariant, finite-dimensional, minimal:

d
amzAw—l—Bu, y = Cux;

and s quadratic: e.g.,
st (uyy) = |ul®* — |y]°.

Then V existsiff V u € £5,d y € £, (unique) such that
Ylle, < [lulle,-

\ iff a quadratic one exists: V(z) = = ' K. /
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/ iff there exists a solution K = K ' to the
Linear Matrix Inequality (LMI)

ATK+ KA—-C'C KB
BTK —I

.. iff ... to the Algebraic Riccati Inequality
ATK+KA—-—KBB'K—-C'C<o.
... to the Algebraic Riccati Equation (ARE)
A'TK+ KA—-KBB'K-C'C =0.
Solution set is convex, compact, and attains its inf and sup:
K- <K<KT

Extensive theory, relation with other system representations,

\many applications, well-understood (also algorithmically).
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The notion of a dissipative system:

Generalization of ‘Lyapunov function’ to open systems

Central concept in control theory: many applications to
feedback stability, robust (H ..-) control, adaptive control,
system identification, passivation control

~~» passive electrical circuit synthesis procedures
Notable special case: second law of thermodynamics

Drawback 1: requires separation of interaction variables in

inputs and outputs

Drawback 2: imposes storage function = state function.

This is something one would like to prove!

Drawback 3: limited to dynamical (< distributed) systems
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HEAT DIFFUSION '

q(x,t)

Wiy

7 l .

T (x,t)

Evolution of the temperature along a heat conducting bar:

2T = f’ S T+q, T>O0,

T(x,t) € R : temperature,
q(x,t) € R : rate of heat supplied.

o
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First law:

Diffusion is conservative w.r.t. the supply rate q:

Jp2 a(t,x) de dt = 0,

Second law:

Diffusion is dissipative w.r.t. the supply rate — %

t
1) at < o.
R2 T(w, t)

for all (T, q) € B1, = the elements of the behavior such that
T(t,x) = Tp > 0 outside a compact set.

N /
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Can these ‘global’ versions be expressed as ‘local’ laws?

FLUX —= 2/ %% //;—:E FLUX

STORAGE

Change of storage + Flux < Supply.
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Define the following variables:

FE =
)
ox
S = In(T)
1 0
T Tox
19
5= o™

the stored energy density,

the energy flux,

the entropy density,

the entropy flux,

the rate of entropy production.
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Local versions of the first and second law:

Conservation of energy:

Entropy production:

Note: Since (Dg>0) = 98 + % Fs

N
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It is this ad hoc construction of the

storage and flux

that we want to systematize, to carry out in general.
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BEHAVIORAL SYSTEMS '

A system := | X = (T, W, B)

T = the set of independent variables

time, space, time and space

W = the set of dependent variables

(= where the variables take on their values),
signal space, space of field variables, . ..

B C W' : the behavior|| = the admissible trajectories

\_
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‘Zz(T,W,%)I

for a trajectory w : T — W, we thus have:

w € 5 : the model the trajectory w,
w & B : the model forbids the trajectory w.

In this lecture, T = R"™, (‘n-D systems’), W = R",
w : R" — R", (wl(wla Tty mn)a tee 9’ww(w17 Tty mn))a
often, n = 4, independent variables (¢, z, y, z),

'8 — solutions of a system of constant coefficient
linear PDE’s.

’Linear shift-invariant distributed differential systems’.

N

/
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Example: Maxwell’s equations

s 1
V. = —P
€0
_ 0 -
VXE = ——B,
ot
V-B = 0,
2 — 1—.» 8—»
c’VxB = —j3+ —FE
€0 ot

T = R x R? (time and space),
W = (E ) B ’ .; ' P)

(electric field, magnetic field, current density, charge density),
W =R3 xR x R? x R,
'8 = set of solutions to these PDE’s.
Note: 10 variables, 8 equations! = 1 free variables.

/
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‘ n-D LINEAR DIFFERENTIAL SYSTEMS .

T =R", W =R",
5 = the solutions of a linear constant coefficient system of PDE’s.

Let R € R**¥[&1,+ - ,&4], and consider
R(aiwla 731%)“’ =0 (*)
Define

B = {w € € (R"*,RY) | (*) holds }

¢ (R™, R") mainly for convenience, but important for some results.

N /
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Notation: n-D linear differential systems:

(R™",R",B) € £, orB € £7,

o o
8&31 ’ ’ 8£Un

B = ker(R( ).
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Example:

B e L.

\_

R(€t9 £w9 g'ya €z) —

Maxwell’s equations

W = COI[Ewa Ey,E,,Byy,By,B.;J%;7ysJz» p]a
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‘ CONTROLLABILITY '

Definition: 5 € £7 is said to be

[ controllable]

if for all w1, wo € B and
for all O, O C R™, non-overlapping closure,
there exists w € 2B such that w|p, = w1|o, and w|p, = w2|o,-

Le., controllability : <> the elements of 3 are ‘patch-able’.

Special case: Kalman controllability for 1-D input/state systems.

\_
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In pictures:
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CONDITIONS FOR CONTROLLABILITY .

Representations of elements of £7:

R, 2 w=0 (v
called a kernel representation of 8 — ker(R(aiwl, cee %));
w = M(aiwl"" ,aiwn)ﬁ (% * *)
called an image representation of 28 = im (M ( 821 sty 82 ).

N
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Elimination theorem =-
every image (of a linear constant coefficient PDO) is also a kernel.

¢ Which kernels are also images ??

Theorem: The following are equivalent for 5 € £~ :

1. *B is controllable,

2. | B admits an image representation,

3. foranya € R"[&y,-+- , &,
aT[a%zl, cen ai%]% equals O or all of € (R, R),

4. R"[€1,- -+ 5 &)/ is torsion free,

etc.

N /
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/ ARE MAXWELL’S EQUATIONS CONTROLLABLE ? I \

The following equations in the scalar potential ¢ :R x R®> — R and
the vector potential A : R x R3 — R3, generate exactly the solutions
to Maxwell’s equations:

;. &=

<.

p

i vy
ot ’
V X ff,
a—sz— 2v2A 2V(V - A 2V
€0 8t2 €oC —|— €oC ( ) —|— €0 3t Qb,
—GOEV c A — goV30.
ot

N

Proves controllability. Illustrates the interesting connection

controllability < d potential!

/
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OBSERVABILITY '

Consider

w=M(z2 5 52l

) Oz,

behavior B = im(M(aiwl, cee a%) c v,
w : manifest variables ; £ : latent variables.

Definition: 7 is said to be

[observable from wJ

if to each w € *B, there exists a unique £ such that
w = M(aim, cee 6%1)2, i.e., iff M(aiwl, cee 6%1) is injective.

N

/
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manifest . - | . latent
variables SYSTEM : € variables
”observed” ’hidden”
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Controllability = ;¢ d an observable image representation ??

For 1-D systems, yes! For n-D systems, not necessarily!

Call B € £ trivializable if 3 an invertible PDO,

U(ges: s o) (e, with U € R¥¥[£q, -+« -, £,] unimodular)
such that

U(a%w“ ,6%)% = {(w},w}) € € (R™,R") | w), = 0}.

Hence the behavior of (w7, w’}) € U(aiwl, cee 6%1)% is then:

/ /I
w; free, w, = 0.

N

39



-

Theorem: The following are equivalent for 25 € £7,
B = ker(R(z%, -+ , 322)):

1. B admits an observable image representation,
2. ‘B is trivializable,

3. rank(R(A1,:++ ,Ay)) = rank(R)
for all (Aq,--- , ;) € C™.

Proof: Serre’s conjecture.

Example: controllable 1-D systems.

Non-examples: ker(VXx) = im(V), ker(V:) =im(V Xx).

Non-example: Maxwell’s equations. Potential is not observable!

N

No potential ever is, for Maxwell’s equations.

/
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Multi-index notation:

= (T1y..+ y2y),

§ = (519"' 9€n)9C: (Cla

d _ [ 8 8 dF
%_(3—%9 73wn)9

dr = dxidxs ...dx,.

\_

dxk ~—

k o (k]_,... ,kn),z — (£17°°° 7‘611)7

,Cn),TIZ (7719-” 977n)9

k kn
_(81 o )7

a k1 9°°°* 9 q kn
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Let @, , € R“*" (only finite number # 0).
The map from €>°(R™, R") to €>°(R™, R) defined by

d* d*

-
w — Zk,ﬁ(ﬁw) ‘I’k,ﬂ(@’w)

is called quadratic differential form (QDF) on €°°(R"™, R").

Introduce the 2n-variable polynomial matrix ® defined by

®(¢,m) = ) Preltn’.
k.l

Denote this QDF as QQ4; whence Q4 : w — Qs (w).
\This map is parameterized by ®({,n) € R"*"[{, n].

/
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DISSIPATIVE DISTRIBUTED SYSTEMS '

We only consider controllable linear differential systems and QDFE’s.

Definition: B3 € £7, controllable, is said to be [ dissipative | with
respect to the [supply rate] Qs (a QDF) if

Jon Qa(w)dx > 0

for all w € *B of compact support.

Idea: Qg (w)(x1y... s xy)dxy -+ - dx, : rate of ‘energy’ delivered to
the system.
Dissipativity :<> the system absorbs (in space and time) net energy.

N /
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‘ LOCAL VERSION .

Assume that a system is ‘globally’ conservative or dissipative.
Can this dissipativity be expressed through a ‘local’ law?

SUPPLY

YyYv O FLUX
STORAGE

I

DISSIPATION

~
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that the local dissipation law

/ LOCAL DISSIPATION LAW ' \

Main Theorem: Let 5 € £ be controllable. Then 5 is dissipative
with respect to the supply rate Qs iff there exist an image
representation w = M (%)E of B, and an n—vector of QDF’s

Qv = (Qu,,-.. , Qg )on €2 (R", RIM®)) called the flux, such

V.-Qu(f) < Qa(w)

holds for all (w, £) that satisfy w = M (%)E.

Asusual V - Qg := %Q% 4.4

Note: the local law involves involves
\ (possibly unobservable, - i.e., hidden!) latent variables (the £’s). /

8
o Qw, -
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In the case that the independent variables are (¢, x, y, z), this
theorem can be reformulated as:

d  storage S : RAim() 5 R and
spatial flux F : R4m®) 5 R3_ such that

58(8) + 2 Fu(®) + 2 Fy(0) + ZF.(¢) < Qa(w)

holds for all (w, £) that satisfy w = M (2 5g 3 gb By Dz 9 )y,

N
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/ EXAMPLE: ENERGY STORED IN EM FIELDS ' \

Maxwell’s equations are dissipative (in fact, conservative) with
respect to — E. f, the rate of energy supplied.
Introduce the stored energy density, S, and

the energy flux density (the Poynting vector,) ﬁ, given by

2
S(E,B):EOE-E—l— 02 BB,

F(E,B) = eoc*E x B.

The following is a local conservation law for Maxwell’s equations:

S S(E,B)+V-F(E,B)+E-j=0.

Note that the local version of conservation of energy involves B in
Qldition to E and f, the variables in the rate of energy supplied. /
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Eliminate B , p from Maxwell’s equations. Straightforward

computation of the relevant left syzygy yields

WHICH PDE’s DESCRIBE (E, j) IN MAXWELL’S EQNS ?

0%
80@E -+ €oC

o_ - .
€O—V°E -+ V‘]

ot

2 - 0 -
VXVXE+ —j

ot

Elimination theorem =

o

this exercise would be exact & successful.

/
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‘ IDEA OF THE PROOF .

Use controllability and an image representation w = M’( % )2 to

reduce dissipativeness to

Qs (£) dz >0
Rn

for all £/ € €°°(R™, R®) of compact support, with

(I),(Ca 77) — (M,)T(C)(I)(Ca n)M'(ﬂ)-
Easily seen to be equivalent to

P’ (—iw,iw) > 0forallw € R™.

\_ /
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POLYNOMIAL MATRIX FACTORIZATION '

Consider the factorization equation

®'(—¢£,8) = X T (=) X(§).

with &’ € R***[¢], /(&) = (®') T (=€) given, and X the
unknown.

For n = 1, it is well-known (but non-trivial) that this factorization
equation is solvable (for X < R®*®[£]!) iff

P’ (—iw,tw) > 0 forall w € R™.

For n > 1 this equation cannot in general be solved over the
polynomial matrices, for X € R®*®[£], but it can be solved over the

/

matrices of rational functions, i.e., for X € R®**®(&).

N
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This factorizability is a consequence of Hilbert’s 17-th problem!

A polynomial p € R[&1,--- ,&,], p > 0, canin general not be
expressed as

p=p;+p;+--+p;

with the p;’s € R[£1,:-- ,&,] (itcanforn = 1).

But a rational function (and hence a polynomial)
p € R(&1y ¢ &), p >0, canindeed be expressed as such a
sum of squares, with the p;’s € R(&1,--- , &), in fact, with k = 27,

This solvability over the scalar rational functions immediately leads
to solvability in the matrix case.

N /
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Write the factor X = DN 1, with D, N € R**®[¢{], and N
diagonal. Define £’ = N ( %)K. Note that NV (%) is surjective. Then

Qe (N (s )0)dz = [ D) de

n

R™

This implies N T (—€)®'(—£,£)N (¢) — DT (—£)D(£) = 0.

Define ¥ € R**®[(,n] asa (non-unique) solution of
(€ +m)-¥'(¢mn) =N (20N — D' ({)D(n).

This yields the local law

V-Qu(£) = Qa(w) — |D(2)£)?

withw = M'(L)N(2)e.

N /
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Hence

V-.Qu(f) < Qs (w),

with w = M’( % YN ( % )£, an image representation of 3.
L]

Since the image representation w = M’( %)N ( % )£ need not be
observable, it may be impossible to ‘replace’ ¢ by w in the casen > 1.

However, in the case n — 1, we can eliminate £, since the image
representation w = M'( % )¢’ can be taken to be observable, and IV

can be taken to be 1.

o /
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Notes:

1. Local versions require hidden (unobservable) latent variables!
2. ¥, (or (S, F)) is not unique, not even in the conservative case.
3. Is Q¢ a state function? What is state for PDE’s?

1. and 2. are illustrated already by Maxwell’s equations.

\_
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e Dissipative systems: a central notion in the theory of open

RECAP ' \

systems
Important problem: the construction of storage functions

For linear differential systems (systems described by PDE’s) and
quadratic differential forms, the equivalence of global and local
dissipativeness have been demonstrated

The theory of £7, of linear differential systems, brings system
theory squarely into mainstream mathematics via things as the
fundamental principle, module theory, computer algebra, Serre’s
conjecture, factorization questions, etc.

Issues as the existence of a potential function, conservation laws,
dissipativity, etc., are of much interest in physics as well as in
systems theory (s and H . control and filtering). /
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In this talk, I freely used ideas and results by Oberst, Shankar, Pillai,
Rocha, e.a.

More info? Surf to

http://www.math.rug.nl/~willems/
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‘ Thank you! I




